Position and Orientation Control of a Two-Wheeled Differentially Driven Nonholonomic Mobile Robot
نویسندگان
چکیده
Abstract: This paper addresses the dynamic stabilization problem of a two-wheeled differentially driven nonholonomic mobile robot. The proposed strategy is based on changing the robot control variables from x, y and θ to s and θ, where s represents the robot linear displacement. Using this model, the nonholonomic constraints disappear and we show how the linear control theory can be used to design the robot controllers. This control strategy only needs the robot localization (x, y, θ), not requiring any velocity measurement or estimation. The complete derivation of the control strategy and some simulated results are presented.
منابع مشابه
Dynamical formation control of wheeled mobile robots based on fuzzy logic
In this paper, the important formation control problem of nonholonomic wheeled mobile robots is investigated via a leader-follower strategy. To this end, the dynamics model of the considered wheeled mobile robot is derived using Lagrange equations of motion. Then, using ADAMS multi-body simulation software, the obtained dynamics of the wheeled system in MATLAB software is verified. After that, ...
متن کاملMobile robot predictive trajectory tracking
For a two-wheeled differentially driven mobile robot a trajectory tracking concept is developed. A trajectory is a time-indexed path in the plane, i.e. in the three-dimensional configuration space consisting of position and orientation. Due to the nonholonomic nature of a rolling wheel, the system cannot be stabilized by a continuous time-invariant feedback or by feedback linearization. A novel...
متن کاملNon-Singular Terminal Sliding Mode Control of a Nonholonomic Wheeled Mobile Robots Using Fuzzy Based Tyre Force Estimator
This paper, proposes a methodology to implement a suitable nonsingular terminal sliding mode controller associated with the output feedback control to achieve a successful trajectory tracking of a non-holonomic wheeled mobile robot in presence of longitudinal and lateral slip accompanied. This implementation offers a relatively faster and high precision tracking performance. We investigate this...
متن کاملDecentralized Kinematic Control of Payload Transport by a System of Mobile Manipulators
In this paper, we examine creation of a decentralized kinematic control scheme for a composite system of two (or more) wheeled mobile manipulators that can team up to cooperatively transport a common payload. Each mobile manipulator module consists of a differentially-driven wheeled mobile robot (WMR) with a mounted planar two-degree-offreedom (d.o.f) manipulator. A composite multi-degree-offre...
متن کاملRobust Sliding Mode Controller for Trajectory Tracking and Attitude Control of a Nonholonomic Spherical Mobile Robot
Based on dynamic modeling, robust trajectory tracking control of attitude and position of a spherical mobile robot is proposed. In this paper, the spherical robot is composed of a spherical shell and three independent rotors which act as the inner driver mechanism. Owing to rolling without slipping assumption, the robot is subjected to two nonholonomic constraints. The state space representatio...
متن کامل